

Lung Cancer

David M. Jackman, MD

Senior Physician, Lowe Center for Thoracic Oncology

Medical Director of Clinical Pathways and New Business Initiatives

Medical Director, DFCI Collaborative and Strategic Alliances

Dana-Farber Cancer Institute

Assistant Professor of Medicine
Harvard Medical School

David Jackman, MD

Titles:

- Senior Physician, Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute
- Medical Director of Clinical Pathways and New Business Initiatives, Dana-Farber Cancer Institute
- Medical Director, DFCI Collaborative and Strategic Alliances, Dana-Farber Cancer Institute
- Assistant Professor, Harvard Medical School

Education and Training:

- AB and MD: Brown University, Providence, RI
- Residency, Internal Medicine: Beth Israel Deaconess Medical Center, Boston, MA
- Fellowship, Medical Oncology: Dana-Farber/Massachusetts General Hospital, Boston, MA

Specialty:

- Thoracic Oncology
- Cancer Care Delivery

Disclosures

I have no conflicts to disclose

Objectives

- Epidemiology
- Lung Cancer Screening
- Clinical Presentation, Diagnosis, Staging
- Overview of Lung Cancer Therapy

Epidemiology

Practice Question 1

Which of the following statements is true about lung cancer?

- A. Breast cancer causes more deaths in women than lung cancer.
- B. For former smokers, it takes ~ 10 years for the risk of lung cancer to decrease to that of a nonsmoker.
- C. More than half of new lung cancers are already metastatic at the time of diagnosis.
- D. Tumor grade (level of differentiation under the microscope) is a more important prognostic factor than tumor stage (extent of disease on scans)
- E. Small cell lung cancer is both more aggressive and more common than non-small cell lung cancer.

Epidemiology

Screening

Presentation

Lung Cancer Therapy

Lung Cancer Epidemiology

at a glance

Impact of Smoking on Lung Cancer Risk: Rules of 20

20x

Smoking increases one's risk of smoking by ~ 20-fold.

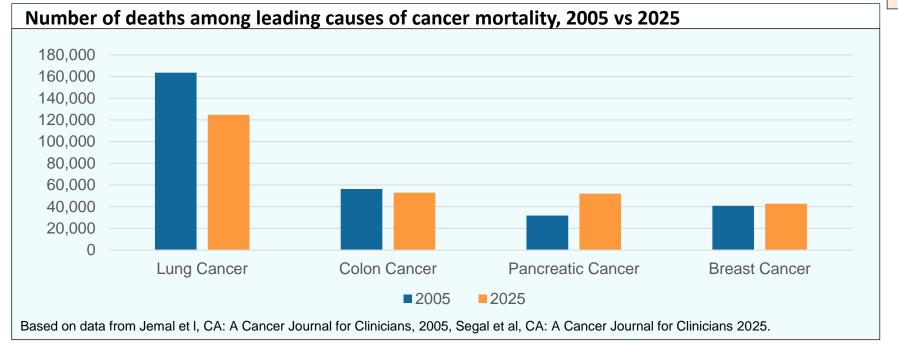
20%

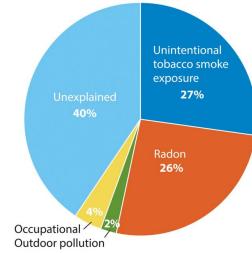
Up to 20% of new lung cancer cases in the US occur in never smokers.

10 x 2

10 years after smoking cessation, one's lung cancer risk is cut in two

Does vaping cause lung cancer?


It is still too early to say.


However, we know that vape has been found to contain:

- Acetaldehyde
- Acrolein
- Benzene
- Cadmium
- Diacetyl

- Diethylene glycol
- Formaldehyde
- Heavy metals (lead, nickel, tin)

American Lung Association (<u>www.lung.org/quit-smoking/e-cigarettes-vaping/whats-in-an-e-cigarette</u>)

Causes of lung cancer in non-smokers
Adapted from American Cancer Society Facts &
Figures 2006. Special section Environmental
Pollutants.

Epidemiology

Screening

Presentation

Lung Cancer Therapy

Lung Cancer Epidemiology

at a glance

Impact of Smoking on Lung Cancer Risk: Rules of 20

20x

Smoking increases one's risk of smoking by ~ 20-fold.

20%

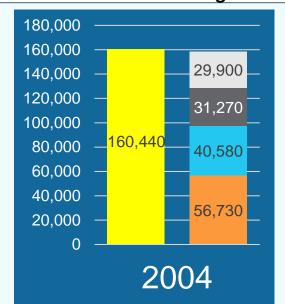
Up to 20% of new lung cancer cases in the US occur in never smokers.

10 x 2

10 years after smoking cessation, one's lung cancer risk is cut in two

Does vaping cause lung cancer?

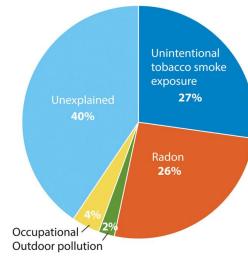
It is still too early to say.


However, we know that vape has been found to contain:

- Acetaldehyde
- Acrolein
- Benzene
- Cadmium
- Diacetyl

- Diethylene glycol
- Formaldehyde
- Heavy metals (lead, nickel, tin)

American Lung Association (www.lung.org/quit-smoking/e-cigarettes-yaping/whats-in-an-e-cigarette)



Based on data from Jemal et I, CA: A Cancer Journal for Clinicians, 2004, Segal et al, CA: A Cancer Journal for Clinicians 2024.

- Lung Cancer
- Colorectal Cancer
- Breast Cancer
- Pancreatic Cancer
 - Prostate Cancer

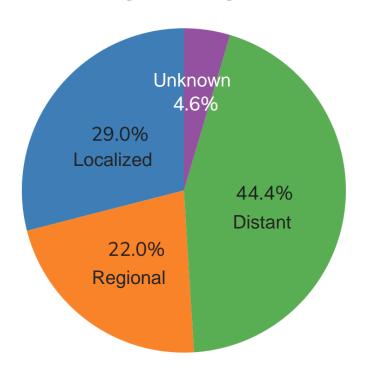
Causes of lung cancer in non-smokers
Adapted from American Cancer Society Facts &
Figures 2006. Special section Environmental
Pollutants.

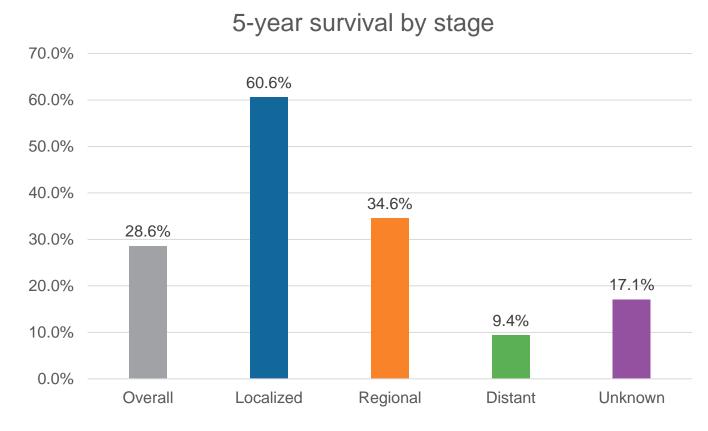
Epidemiology

Screening

Presentation

Lung Cancer Therapy





Stage remains a critical prognostic factor

Stage at Diagnosis

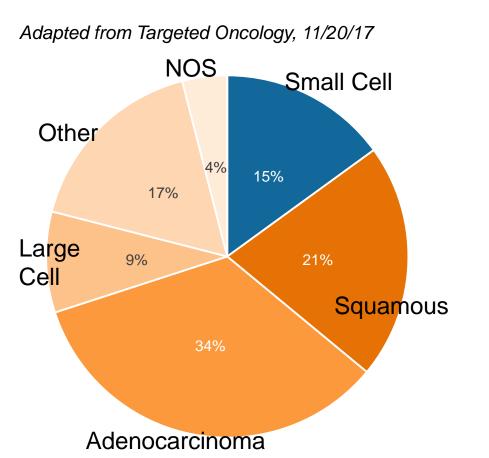
This data from www.cdc.gov is based on cancers diagnosed from 2015-2021 and follow-up of patients through 12/31/21.

Epidemiology

Screening

Presentation

Lung Cancer Therapy



Impact of Lung Cancer Histology

	Non-Small Cell		nall Cell
	Small Cell	Squamous	Adenocarcinoma
Most Common Location	Central	Central	Central or Peripheral
Found in non- smokers?	Exceedingly Rare	Rare	Yes
Targetable genomic alterations	Extremely unlikely	Unlikely	Possible, especially in nonsmokers
Classic Paraneoplastic Syndrome(s)	SIADH, Cushings, Lambert-Eaton	Hypercalcemia	-

Non-Small Cell

Epidemiology Screening Presentation Lung Cancer Therapy Summary

Practice Question 1

Which of the following statements is true about cancer?

- A. Breast cancer is the most common cause of cancer death in women.
- B. For former smokers, it takes ~ 10 years for the risk of lung cancer to decrease to that of a nonsmoker.
- C. More than half of new lung cancers are already metastatic at the time of diagnosis.
- D. Tumor grade (level of differentiation under the microscope) is a more important predictor than tumor stage (extent of disease on scans)
- E. Small cell lung cancer is both more aggressive and more common than non-small cell lung cancer.

Epidemiology Screening Presentation Lung Cancer Therapy Summary

Lung Cancer Screening

Practice Question 2

According to current USPSTF Guidelines, low-dose CT screening for lung cancer is currently recommended for which of the following asymptomatic patients?

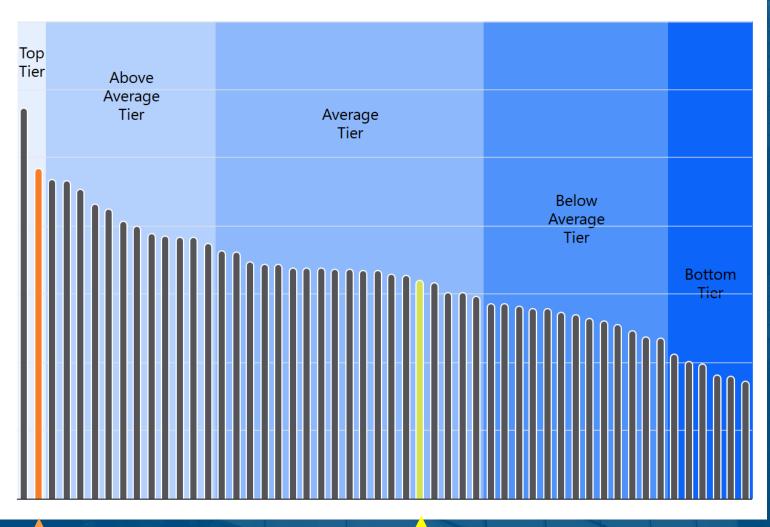
- A. A 42 year-old nonsmoking former naval midshipmen with a history of asbestos exposure
- B. A 56 year-old non-smoker whose father had died of lung cancer at age 64.
- C. A 76 year-old who had smoked 1 pack per day for 30 years (from age 16-46).
- D. A 70 year-old who had smoked 1 pack per day for 20 years (from age 45-65).
- E. A frail 84 year-old with Class III CHF who has continued to smoke 2 packs per day since age 14.

Epidemiology

Screening

Presentation

Lung Cancer Therapy



State-by-State Lung Cancer Screening Rates in High-Risk Patients, 2024

State Ranking by High-Risk Screening Rate

Massachusetts: 24%

National Average: 16%

ABCs of Lung Cancer Screening (USPSTF)

Audience

- Asymptomatic adults, and
- Aged 50 to 80 years, and
- Heavy and recent smoking history:
 - ≥ 20 pack-years, and
 - Currently smoke or quit smoking within the past 15 years.

Benefit

NLST (NEJM 2011. 365: 395-409):

- 20% decrease in lung cancer mortality
- 6.7% decrease in all cause mortality

NELSON (de Koning et al, WCLC 2018):

26% decrease in lung cancer mortality

USPSTF: Grade **B**

Calendar

- Annual Low-Dose Chest
 CT
- Screening can be discontinued once a person has not smoked for 15 years or develops a health problem that substantially limits life expectancy or the ability or willingness to have curative lung surgery.

Epidemiology

Screening

Presentation

Lung Cancer Therapy

Follow-up of Radiographic Findings

Setting	Guidelines
Screening of an asymptomatic patient	LUNG-RADS ¹
Incidental finding on a scan performed for another reason	Fleishner Guidelines ²
Radiographic study performed as part of evaluation of a symptomatic patient	Aggressive follow-up

- 1. LUNG-RADS: American College of Radiology. https://www.acr.org/-/media/ACR/Files/RADS/Lung-RADS/LungRADSAssessmentCategoriesv1-1.pdf
- 2. Fleishner Guidelines: MacMahon et al, Radiology 2017. https://pubs.rsna.org/doi/10.1148/radiol.2017161659

Epidemiology Screening Presentation Lung Cancer Therapy

Screening Follow-up: LUNG-RADS (reference) From 2022 UNG-RADS from ACR

Lung- RADS	Category Descriptor	Findings	Management
	Incomplete Estimated Population Prevalence: ~ 1%	Prior chest CT examination being located for comparison (see note 9)	Comparison to prior chest CT;
0		Part or all oflungs cannot be evaluated	Additional lung cancer screening CT imaging needed;
		Findings suggestive of an inflammatory or infectious process (see note 10)	1-3 month LDCT
	Negative	No lung nodules OR	
1	Estimated Population Prevalence: 39%	Nodule with benign features: Complete, central, popcorn, or concentric ring calcifications OR Fat-containing	
	Benign - Based on imaging features or indolent behavior Estimated Population Prevalence: 45%	Juxtapleural nodule: • < 10 mm (524 mm³) mean diameter at baseline or new AND • Solid; smooth margins; and oval, lentiform, or triangular shape	12-month screening LDCT
		Solid nodule: • < 6 mm (< 113 mm³) at baseline OR • New < 4 mm (< 34 mm³)	
2		Part solid nodule: • < 6 mm total mean diameter (< 113 mm³) at baseline	
		Non solid nodule (GGN): • < 30 mm (< 14,137 mm³) at baseline, new, or growing OR • ≥ 30 mm (≥ 14,137 mm³) stable or slowly growing (see note 7)	_
		Airway nodule, subsegmental - at baseline, new, or stable (see note 11)	
		Category 3 lesion that is stable or decreased in size at 6-month follow-up CT OR Category 4B lesion proven to be benign in etiology following appropriate diagnostic workup	

Screening Follow-up: LUNG-RADS (reference) From 2022 PUNG-RADS from ACR

		1	I	_
		Solid nodule: • ≥ 6 to < 8 mm (≥ 113 to < 268 mm³) at baseline OR • New 4 mm to < 6 mm (34 to < 113 mm³)		
3	Probably Benign - Based on imaging features or behavior	Part solid nodule: • ≥ 6 mm total mean diameter (≥ 113 mm³) with solid component < 6 mm (< 113 mm³) at baseline OR • New < 6 mm total mean diameter (< 113 mm³)	6-month LDCT	
Estimated Population Prevalence: 9%	Non solid nodule (GGN): • ≥ 30 mm (≥ 14,137 mm³) at baseline or new			
		Atypical pulmonary cyst: (see note 12) Growing cystic component (mean diameter) of a thick-walled cyst		
		Category 4A lesion that is stable or decreased in size at 3-month follow-up CT (excluding airway nodules)		
		Solid nodule: • ≥ 8 to < 15 mm (≥ 268 to < 1,767 mm³) at baseline OR • Growing < 8 mm (< 268 mm³) OR • New 6 to < 8 mm (113 to < 268 mm³)		
4A	Suspicious Estimated Population Prevalence: 4%	Part solid nodule: • ≥ 6 mm total mean diameter (≥ 113 mm³) with solid component ≥ 6 mm to < 8 mm (≥ 113 to < 268 mm³) at baseline OR • New or growing < 4 mm (< 34 mm³) solid component	3-month LDCT; PET/CT may be considered if there is a ≥ 8 mm (≥ 268 mm³) solid nodule or solid	
		Airway nodule, segmental or more proximal - at baseline (see note 11)	component	
		Atypical pulmonary cyst: (see note 12) Thick-walled cyst OR Multilocular cyst at baseline OR		
	1	Thin- or thick-walled cyst that becomes multilocular		Ш

ary

Screening Follow-up: LUNG-RADS (reference) UNG-RADS from ACR

	I	<u>-</u>	1
		Airway nodule, segmental or more proximal - stable or growing (see note 11)	Referral for further clinical evaluation
4B	Very Suspicious Estimated Population Prevalence: 2%	Solid nodule: • ≥ 15 mm (≥ 1767 mm³) at baseline OR • New or growing ≥ 8 mm (≥ 268 mm³) Part solid nodule: • Solid component ≥ 8 mm (≥ 268 mm³) at baseline OR • New or growing ≥ 4 mm (≥ 34 mm³) solid component Atypical pulmonary cyst: (see note 12) • Thick-walled cyst with growing wall thickness/nodularity OR • Growing multilocular cyst (mean diameter) OR • Multilocular cyst with increased loculation or new/increased opacity (nodular, ground glass, or consolidation) Slow growing solid or part solid nodule that demonstrates growth over multiple screening exams (see note 8)	Diagnostic chest CT with or without contrast; PET/CT may be considered if there is a ≥ 8 mm (≥ 268 mm³) solid nodule or solid component; tissue sampling; and/or referral for further clinical evaluation Management depends on clinical evaluation, patient preference, and the probability of malignancy (see note 13)
4X	Estimated Population Prevalence: < 1%	Category 3 or 4 nodules with additional features or imaging findings that increase suspicion for lung cancer (see note 14)	
S	Significant or Potentially Significant Estimated Population Prevalence: 10%	Modifier: May add to category 0-4 for clinically significant or potentially clinically significant findings unrelated to lung cancer (see note 15)	As appropriate to the specific finding

Practice Question 2

According to current USPSTF Guidelines, low-dose CT screening for lung cancer is currently recommended for which of the following asymptomatic patients?

- A. A 42 year-old nonsmoking former naval midshipmen with a history of asbestos exposure
- B. A 56 year-old non-smoker whose father had died of lung cancer at age 64.
- C. A 76 year-old who had smoked 1 pack per day for 30 years (from age 16-46).
- D. A 70 year-old who had smoked 1 pack per day for 30 years (from age 35-65).
- E. A frail 84 year-old with Class III CHF who has continued to smoke 2 packs per day since age 14.

Epidemiology

Screening

Presentation

Lung Cancer Therapy

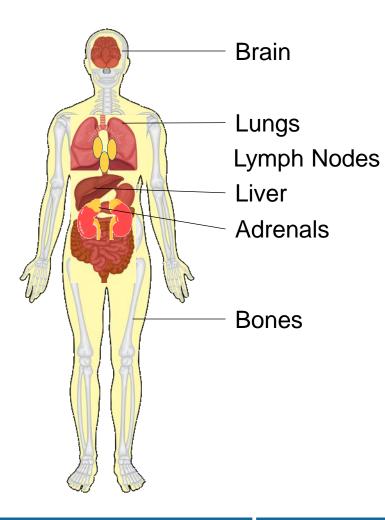
Clinical Presentation, Diagnosis, and Staging

Practice Question 3

A 68 year-old man with ongoing tobacco use (1ppd x 50 years) presents with worsening shortness of breath over 2 months time, along with hoarseness. CT angiogram is negative for pulmonary embolus, but it does show a large left hilar mass, along with subcarinal and left supraclavicular adenopathy and concerns for lesions in the liver and left adrenal. Serum chemistries are notable for a sodium of 124.

What is the most likely cause of hyponatremia?

- A. Dehydration
- B. Psychogenic polydipsia
- C. Syndrome of inappropriate andidiuretic hormone (SIADH)
- D. Laboratory error


Epidemiology Screening Presentation Lung Cancer Therapy Summary

Clinical Presentation of Lung Cancer:

Generalized Symptoms

- Fatigue
- Weight loss
- Night sweats

Symptoms related to local destruction, obstruction, or replacement

- Cough
- Shortness of breath Fracture
- Hemoptysis
- **SVC Syndrome**

- Focal bone pain
 Focal CNS symptoms
 - Seizure
- Cord Compression
 Altered Mental Status

Paraneoplastic Syndromes

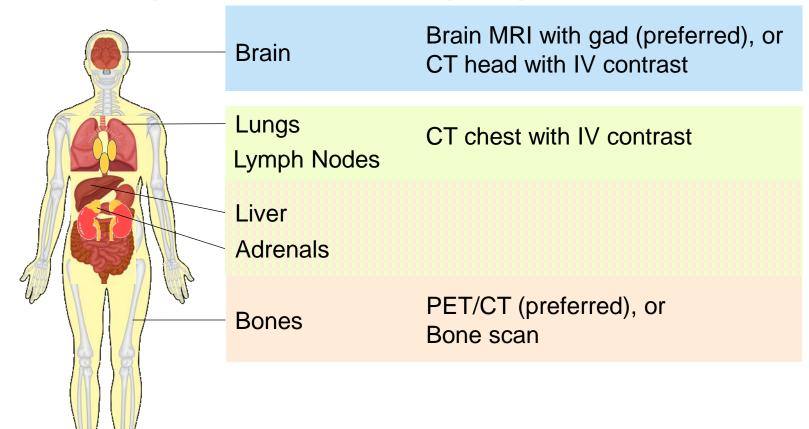
- SIADH
- Paraneoplastic Cushings
- Hypercalcemia

Epidemiology

Screening

Presentation

Lung Cancer Therapy



Lung Cancer Staging:

Mediastinal Nodes

- Mediastinal staging:
 - For potentially resectable patients
 - For patients with locally advanced disease
- How:
 - Mediastinoscopy
 - Bronchoscopy/EBUS
 - Lymph node dissection at the time of surgery

Epidemiology

Screening

Presentation

Lung Cancer Therapy

Lung Cancer Diagnosis:

ENDS MEANS ☐ Safe, timely, accurate diagnosis ☐ CT-guided biopsy □ Bronchoscopy/EBUS ☐ Obtain sufficient tissue for subsequent biomarker studies, clinical trial eligibility ■ Mediastinoscopy ☐ Confirm spread (when applicable) ☐ Thoracentesis, other drainage ☐ Surgical procedure □ Other Additional Information: ☐ Bone biopsies are usually inadequate for biomarker studies and trial eligibility. The decalcification process that bone biopsies undergo denatures DNA. ☐ If there appears to be only a single site of spread, it should be biopsied to confirm or rule out metastasis.

Epidemiology

Screening

Presentation

Lung Cancer Therapy

Paraneoplastic Syndromes

Disease	Paraneoplastic Syndrome	Mechanism
Squamous NSCLC	Hypercalcemia	PTHrP
Small cell lung cancer	Syndrome of inappropriate antidiuretic hormone (SIADH)	Anti-diuretic hormone (aka arginine vasopressin)
	Cushing syndrome	Ectopic ACTH
	Lambert-Eaton	Ab against voltage-gated calcium channels
Thymoma	Myasthenia gravis	Ab against nicotinic acetylcholine receptors
	Pure red cell aplasia	Suspect IgG against erythroblasts, epo

Epidemiology Screening Presentation Lung Cancer Therapy Summary

Practice Question 3

A 68 year-old man with ongoing tobacco use (1ppd x 50 years) presents with worsening shortness of breath over 2 months time, along with hoarseness. CT angiogram is negative for pulmonary embolus, but it does show a large left hilar mass, along with subcarinal and left supraclavicular adenopathy and concerns for lesions in the liver and left adrenal. Serum chemistries are notable for a sodium of 124.

What is the most likely cause of hyponatremia?

- A. Dehydration
- B. Psychogenic polydipsia
- C. Syndrome of inappropriate antidiuretic hormone (SIADH)
- D. Laboratory error

Epidemiology

Screening

Presentation

Lung Cancer Therapy

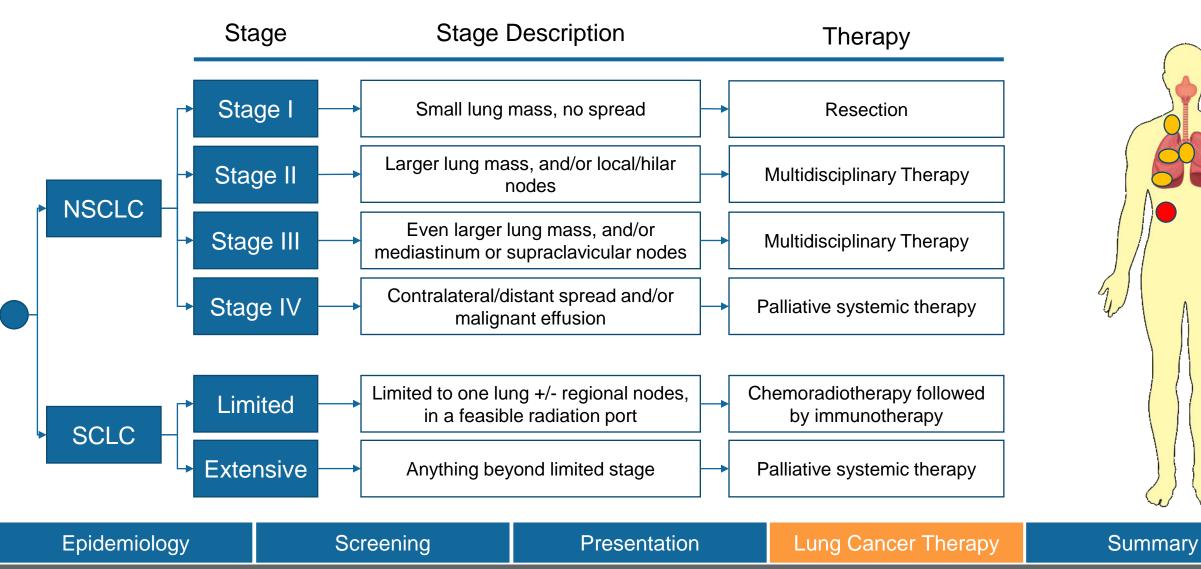
Overview of Therapy For Lung Cancer

Practice Question 4

A 66 year-old woman currently on therapy for her stage IV non-small cell lung cancer presents to her local ED with several days of worsening shortness of breath. The differential diagnosis includes which of the following

- A. Pericardial effusion / cardiac tamponade
- B. Pleural Effusion
- C. Pneumonitis (treatment-associated)
- D. Post-obstructive pneumonia
- E. Progression of lung cancer
- F. Pulmonary Embolism
- G. All of the above

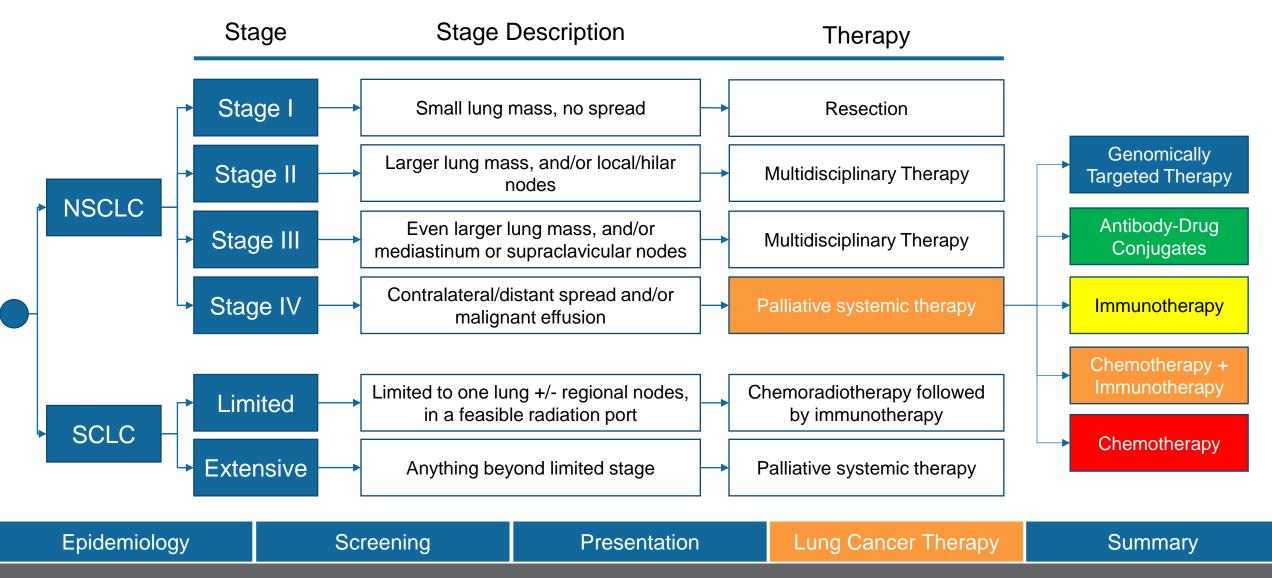
Epidemiology


Screening

Lung Cancer Therapy

Presentation

Overview of Therapy for Lung Cancer



Overview of Therapy for Lung Cancer

Role of Radiation in Lung Cancer

Curative

- Early-stage: alternative to surgery in poor operative candidates
- Locally advanced: with chemotherapy as a neoadjuvant (pre-operative) or definitive strategy

Palliative

- To address an urgent symptom. e.g.: cord compression, SVC syndrome, airway or esophageal obstruction
- To palliate: e.g., bone metastasis
- Brain metastases

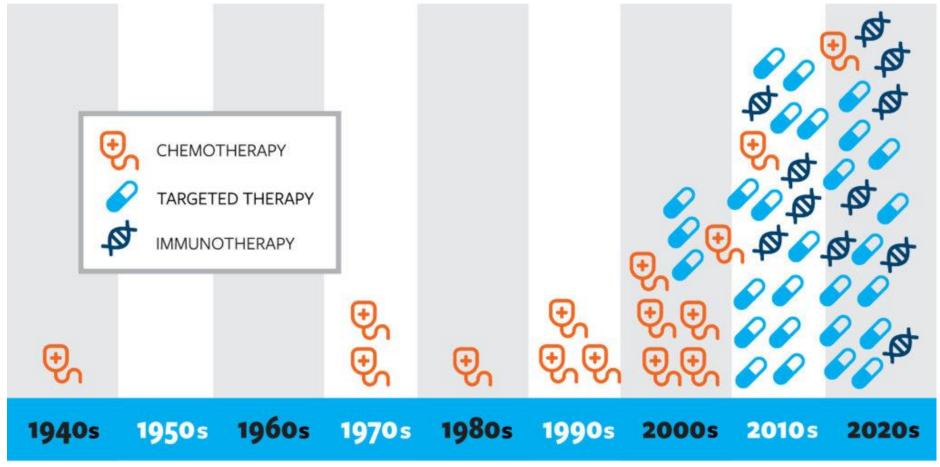
Other

- Prophylactic cranial irradiation (small cell)
- Consolidative chest radiation (small cell)
- Oligo-progressive disease, particularly for patients on targeted tx or immunotherapy

Epidemiology

Screening

Presentation


Lung Cancer Therapy

FDA Approvals for Lung Cancer

From the Lung Cancer Research Foundation

https://www.lungcancerresearchfoundation.org/research/why-research/treatment-advances/#decades

Epidemiology

Screening

Presentation

Lung Cancer Therapy

FDA Approvals for Lung Cancer

Genomic alterations in lung cancer associated with an FDAapproved targeted therapy

Mutations	BRAF V600E EGFR HER2 KRAS G12C MET exon 14	
Fusions/Rearrangements	ALK NRG NTRK RET ROS1	

Epidemiology Screening Presentation Lung Cancer Therapy Summary

Considerations with Targeted Therapies

- Caution with CYP3A4 inhibitors/inducers
 - Many anti-virals, some antibiotics
 - Many anti-epileptics
 - grapefruit, St. John's wort
- Don't assume toxicity patterns across class

Epidemiology

Screening

Lung Cancer Therapy

Presentation

Considerations with immunotherapy

- Side effects can occur at any point in treatment course
- Can get immune-mediated toxicity of essentially any system
- Some severe but rare side effects include: pneumonitis, hepatotoxicity, CNS toxicity, cardiotoxicity, SJS
- For severe toxicity: consult, hospitalization, steroids, immunomodulators

Epidemiology

Screening

Presentation

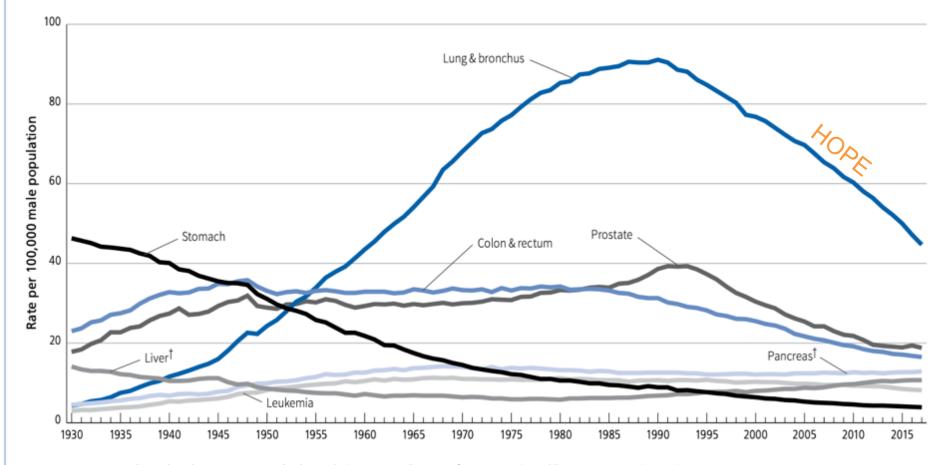

Lung Cancer Therapy

Figure 1. Trends in Age-adjusted Cancer Death Rates* by Site, Males, US, 1930-2017

*Per 100,000, age adjusted to the 2000 US standard population. †Mortality rates for pancreatic and liver cancers are increasing.

Note: Due to changes in ICD coding, numerator information has changed over time. Rates for cancers of the liver, lung and bronchus, and colon and rectum are affected by these coding changes.

Source: US Mortality Volumes 1930 to 1959, US Mortality Data 1960 to 2017, National Center for Health Statistics, Centers for Disease Control and Prevention.

©2020, American Cancer Society, Inc., Surveillance Research

Cancer statistics, 2020. Siegel et al, Ca Cancer J Clin

Take Home Points, Test Prep version

- Stage is still the most prognostic factor
- Small cell lung cancer is the most likely to be associated with smoking and with paraneoplastic syndromes (esp SIADH)
- Lung cancer screening: in smokers heavy (≥ 20 pk-yrs) and recent (quit within the last 15 years)
- Staging: Chest CT w/ contrast, PET/CT, Brain MRI

Epidemiology

Screening

Presentation

Lung Cancer Therapy

Take Home Points, Clinical Practice Version

- Staging: Brain imaging needs IV contrast
- The importance of adequate tissue for diagnosis and testing (core > FNA, non-bone > bone)
- Many targeted therapies are metabolized via CYP3A4 drug interactions
- Lung Cancer Screening

Dana-Farber Cancer Institute

Epidemiology

Screening

Lung Cancer Therapy

Presentation